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We analyze the effective rheology of a dilute suspension of self-propelled slender

particles confined between two infinite parallel plates and subject to a pressure-

driven flow. We use a continuum kinetic model to describe the configuration of the

particles in the system, in which the disturbance flows induced by the swimmers are

taken into account, and use it to calculate estimates of the suspension viscosity for a

range of channel widths and flow strengths typical of microfluidic experiments. Our

results are in agreement with previous bulk models, and in particular, demonstrate

that the effect of activity is strongest at low flow rates, where pushers tend to decrease

the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative

stresses overcome the effects of activity leading to increased viscosities followed by

shear-thinning. The effects of confinement and number density are also analyzed, and

our results confirm the apparent transition to superfluidity reported in recent experi-

ments on pusher suspensions at intermediate densities. We also derive an approxi-

mate analytical expression for the effective viscosity in the limit of weak flows and

wide channels, and demonstrate good agreement between theory and numerical cal-

culations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954193]

I. INTRODUCTION

The transport of motile cells and other self-propelled swimmers through small-scale micro-

fluidic devices has received much scrutiny over the last decade, in part due to its relevance to

biological processes such as reproduction1–3 and its use in engineering applications such as cell

sorting and cell concentration.4–7 Unlike passive particles whose transport is largely dictated by

the imposed flow, the case of active swimmers is significantly more complex due to their self-

propulsion, which enables them to swim across streamlines and can cause them to accumulate

at boundaries.8–10 In the presence of shear, the coupling of self-propulsion and alignment of

slender swimmers with the flow has also been shown to result in unexpected transport phenom-

ena such as upstream swimming3,11,12 and migration from low-shear towards high-shear regions

in pressure-driven channel flows.13 Such effects occur even in very dilute suspensions when

interparticle interactions are negligible.

As a result of their swimming kinematics, microorganisms also exert active stresses on the

carrying fluid, thereby driving local disturbance flows that have been characterized experimen-

tally.14–16 Many microorganisms are nearly neutrally buoyant, so that the leading-order disturb-

ance that they drive in the surrounding medium is a dipole flow, which can be interpreted as

resulting from the equal and opposite thrust and drag forces exerted by the flagella and cell

body on the fluid, respectively. When placed in an external flow, these disturbances can either

facilitate or hinder the flow depending on the sign of the dipole strength r0 and on its orienta-

tion relative to the flow, potentially leading to unusual rheologies. This was first noted in a the-

oretical study by Hatwalne et al.,17 who argued that extensile particles or so-called pushers for

which r0 < 0 should have a negative intrinsic viscosity ½g� < 0, whereas contractile particles or

pullers for which r0 > 0 should have ½g� > 0. A number of more sophisticated models have

been proposed since,18–26 which usually extend theories for the rheology of passive rod
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suspensions27–29 to account for this active dipole and have led to similar predictions. Of partic-

ular relevance to the present study is the model of Saintillan,20 which calculated the effective

viscosity and normal stress differences in a dilute active suspension in uniform shear flow as

functions of shear rate. The model showed that the effects of activity are strongest in weak

flows, where a reduction in viscosity occurs in pusher suspensions; in stronger flows, dissipative

viscous stresses were shown to overtake active stresses and lead to a positive intrinsic viscosity

followed by shear-thinning.

Experiments aimed at testing these predictions have been relatively scarce, in part owing to

technical difficulties: first, the effects of activity on the rheology are strongest at very low shear

rates, which are not accessible to standard rheometers; second, the viscosity of dilute suspen-

sions is typically close to that of water, whereas rheometers work best with more viscous fluids.

Nonetheless, a few experimental techniques have been devised to overcome these challenges.

In the case of suspensions of pusher particles, Sokolov and Aranson30 were the first to estimate

the viscosity of thin liquid films containing swimming Bacillus subtilis by measuring the angu-

lar velocity of a rotating particle subject to a constant imposed magnetic torque. They indeed

reported a viscosity reduction due to activity, which initially became stronger with increasing

volume fraction. However, the unusual nature of their experimental setup rendered quantitative

comparisons with bulk models difficult. Very recently, L�opez et al.31 performed experiments in

a circular Couette cell specially designed to measure torques at very low shear rates, and con-

firmed the existence of a negative intrinsic viscosity in suspensions of Escherichia coli. In the

low-shear-rate plateau, they found that the total viscosity could even decrease to zero in suffi-

ciently concentrated suspensions, suggesting that active pusher suspensions can behave as

superfluids. The possibility of a negative total viscosity is consistent with other experiments32,33

as well as theories34–36 that have reported spontaneous unidirectional flows in confined active

suspensions; in the case of bulk suspensions, the predicted decrease of the intrinsic zero-shear-

rate viscosity towards zero has also been shown to be the driver of hydrodynamic instabilities

leading to collective motion.37

The case of puller particles was considered by Rafa€ı et al.,38 who studied suspensions of

the micro alga Chlamydomonas reinhardtii. They used concentrated suspensions in a cone-plate

rheometer and measured higher shear viscosities in suspensions of live cells than in suspensions

of dead cells as predicted by models. The extensional rheology of both pusher and puller sus-

pensions was also recently studied by McDonnell et al.39 using an acoustically driven microflui-

dic capillary-breakup extensional rheometer. In agreement with studies in shear flows and with

theoretical predictions in extensional flows,21 they observed a decrease in viscosity in bacterial

and sperm suspensions but an increase in algae suspensions.

The present study is primarily motivated by the experiments of Gachelin et al.,40 who

devised a microfluidic rheometer based on the deflection of streamlines in the co-flow of a bac-

terial suspension of E. coli and of clear fluid in a rectangular Hele-Shaw geometry. At equal

flow rates between the two streams, this deflection is proportional to the viscosity ratio between

the two fluids. They also reported a negative particle viscosity in weak flows, followed by an

increase to a positive value and eventual shear thinning with increasing flow rate. While these

trends agree qualitatively with predictions for bulk suspensions in uniform shear,20 a direct

comparison is difficult owing to the non-uniform distribution achieved by self-propelled par-

ticles in confinement: in particular, the tendency of swimmers to spend time in the near-wall

high-shear regions in a pressure-driven flow is expected to amplify the effect of activity on the

rheology in ways that are not easily anticipated.

In this study, we analyze the effective rheology of a dilute active suspension of self-

propelled particles confined between two flat plates and subject to an imposed pressure-driven

flow. The theory extends the previous work of Ezhilan and Saintillan,41 who studied the distri-

bution and transport of self-propelled particles in the same geometry using a continuum

model42,43 but neglected the effect of the hydrodynamic disturbances induced by the swimmers.

Here, this effect is taken into account and the modification of the background flow by the par-

ticles is used to obtain estimates for the suspension viscosity as a function of flow rate and con-

centration. Details of the theoretical model are presented in Sec. II, where we also derive an
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approximate theory for weak flows and wide channels. Numerical results are discussed in Sec.

III where good agreement with experiments is demonstrated.

II. THEORETICAL MODEL

A. Problem definition and Fokker-Planck description

We analyze the effective rheology of a dilute suspension of self-propelled slender particles

of length ‘ and aspect ratio r placed between two planar parallel walls in a Newtonian fluid

with shear viscosity l (Fig. 1). The suspension is subject to an imposed pressure-driven

Poiseuille flow, whose velocity field in the absence of particles is given by

UðzÞ ¼ Um½1� ðz=HÞ2�ŷ; (1)

where 2H denotes the gap width and Um is the maximum velocity at the centerline (z¼ 0). The

corresponding shear rate profile is linear across the channel

C zð Þ ¼ � 2Um

H2
z: (2)

We also introduce the characteristic shear rate �C ¼ Um=H, and note that the maximum shear

rate at the walls is 2�C. The particles have high aspect ratio (r � 1), and their length ‘ is

assumed to be small compared to the channel dimensions so that it can be effectively neglected:

‘� H. The distribution of particles inside the channel is described according to classic mod-

els42–44 by the probability density function Wðx; p; tÞ of finding a particle at position x with unit

director p at time t. It satisfies a Fokker-Planck equation

@W
@t
þrx � _xWð Þ þ rp � _pWð Þ ¼ 0; (3)

where _x and _p denote the translational and angular flux velocities and are modeled as

_x ¼ V0pþ u� dtrx ln W; (4)

_p ¼ f I� ppð Þ � E � pþ 1

2
X� p� drrp ln W: (5)

Here, V0 is the swimming velocity of an isolated particle, and dt and dr denote the translational

and rotational Brownian diffusion coefficients, which are assumed to be constant and isotropic.

The velocity u entering the fluxes is the total fluid velocity, which is the sum of the imposed

flow UðxÞ of Eq. (1) and of the disturbance velocity udðx; tÞ due to the presence of the

FIG. 1. Problem definition: a dilute suspension of self-propelled particles (with swimming director p) is placed in a plane

Poiseuille flow with velocity UðxÞ between two parallel flat plates separated by 2H. The arrows surrounding the particle

show the direction of the disturbance flow for a pusher (r0 < 0).
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particles, whose calculation is detailed in Sec. II B. The angular flux arises due to the rate-of-

strain tensor E ¼ ðruþrutÞ=2 and vorticity X ¼ r� u; it involves the Bretherton constant

f,45 which for a spheroidal particle is given by f ¼ ðr2 � 1Þ=ðr2 þ 1Þ.
We focus here on the case of a dilute suspension, defined as n‘3 � 1 where n is the mean

number density. In this limit, the distribution of particles is expected to be homogeneous in the

x and y directions, and the disturbance velocity simplifies to udðx; tÞ ¼ udðz; tÞŷ. At steady state,

Eqs. (3)–(5) can then be rewritten as

V0 cos h
@W
@z
� dt

@2W
@z2
þ fc zð Þrp � I� ppð Þ � ŷ cos hW½ � ¼ drr2

pW; (6)

where cðzÞ ¼ CðzÞ þ dud=dz is the total shear rate. Eq. (6) expresses the balance of self-

propulsion and translational diffusion in the z direction, shear alignment by the local flow, and

rotational diffusion. It is subject to a no-flux boundary condition at both channel walls41

_x � ẑ ¼ 0; i:e:; dt
@W
@z
¼ V0 cos hW at z ¼ 6H: (7)

Finally, the probability density function W is normalized as

1

2H

ðH

�H

ð
X
W z; pð Þ dp dz ¼ n; (8)

where X denotes the unit sphere of orientation.

B. Particle extra stress and disturbance flow

The calculation of the disturbance flow and of effective rheological properties requires mod-

eling of the particle extra stress, which includes contributions from active dipolar stresses due to

self-propulsion, from Brownian motion, and from the imposed flow: RpðzÞ ¼ Ra þ Rb þ Rf .

Following Saintillan,20 each term is modeled as

Ra zð Þ ¼ nr0 hppi � hIi
3

� �
; (9)

Rb zð Þ ¼ 3nkBT hppi � hIi
3

� �
; (10)

Rf zð Þ ¼ n‘3Alc zð Þ hppppi � I

3
hppi

� �
: ŷẑ; (11)

where angle brackets h�i denote the orientational average

hh pð Þi ¼
1

n

ð
X

h pð ÞW z; pð Þ dp: (12)

The active stress Ra arises from the force dipoles that neutrally buoyant self-propelled particles

exert on the fluid17 and involves the stresslet strength r0, which is negative for pushers16 such

as E. coli and B. subtilis and positive for pullers14,15 such as C. reinhardtii. The case of r0 ¼ 0

describes hypothetical particles known as movers that swim but do not exert active stresses.

The Brownian stress Rb arises from Brownian rotations of the particles and involves the ther-

mal energy unit kBT. Finally, Rf is a passive dissipative stress resulting from the inextensibility

of the particles in the local strain field E ¼ cðzÞŷẑ that they experience.29 The dimensionless

constant A depends on the shape of the particles; for high-aspect-ratio particles (r � 1), it is

obtained from slender-body theory27,46 as A ¼ p=6 logð2rÞ.
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Knowledge of the stress distribution across the channel allows one to solve for the disturb-

ance fluid velocity, which satisfies the Stokes equations: �lr2ud þrqd ¼ r � Rp; r � ud ¼ 0,

where qd is the disturbance pressure. Straightforward integration provides an expression for the

velocity in terms of the particle shear stress as

ud zð Þ ¼ � 1

l

ðz

�H

Rp
yz z0ð Þ dz0; (13)

which scales linearly with n‘3 in the dilute limit. As a result, inclusion of the mean-field dis-

turbance velocity into the Smoluchowski equation for the particle distribution ensures asymp-

totic accuracy of our model to order ðn‘3Þ2. In addition to the flow field, a disturbance pressure

gradient is also established in the cross-stream direction as a result of normal stresses:

qdðzÞ ¼ Rp
zzðzÞ þ qd

0.

Equations (9)–(11) can also be used to estimate the modification of the solvent viscosity by

the particles. First, we define a local particle viscosity gpðzÞ based on a generalized Newtonian

model as

gp zð Þ ¼
Rp

yz zð Þ
c zð Þ

¼ n 3kBT þ r0ð Þhpypzi
C zð Þ þ dud=dz

þ ln‘3Ahp2
yp2

z i: (14)

For convenient comparison with the experiments, it is also useful to introduce a global measure

of the particle viscosity that is independent of z. To this end, we follow the approach of

Gachelin et al.40 and consider the modification of the net flow rate in the channel by the par-

ticles. The imposed flow rate per unit width in the absence of particles is given by

_Qi ¼
ðH

�H

U zð Þ dz ¼ 4

3
UmH; (15)

whereas the disturbance flow rate due the presence of the particles is

_Qd ¼
ðH

�H

udðzÞ dz: (16)

Assuming a Poiseuille law of the form _Q ¼ j=g for the flow rate per unit width, where j ¼
�ð2H3=3Þdq=dy and dq/dy is the imposed pressure gradient, we can define a dimensionless rel-

ative Newtonian viscosity as the ratio

gr ¼
_Qi

_Qi þ _Qd

¼ 1þ 3

4UmH

ðH

�H

ud zð Þ dz

" #�1

: (17)

Clearly, gr ¼ 1 in the case of pure solvent (n‘3 ¼ 0), and departures from this value quantify

the effect of the particles on the net viscosity. The effective intrinsic viscosity is then given by

g½ � ¼ gr � 1 ¼ �
_Qd

_Qi þ _Qd

: (18)

From this last expression, it becomes obvious that ½g� < 0 corresponds to a positive disturbance

flow rate, i.e., a suspension in which particles enhance the imposed flow.

C. Non-dimensionalization

In the following, we scale all variables using time scale d�1
r , length scale H, and velocity

scale Hdr. The probability density function W is also scaled by the number density n. Upon

non-dimensionalization, the Fokker-Planck equation (6) becomes
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Pes cos h
@W
@z
� 2KPe2

s

@2W
@z2
þ 1

2
fc zð Þrp � I� ppð Þ � ŷ cos hW½ � ¼ 1

2
r2

pW; (19)

with cðzÞ ¼ �Pef zþ dud=dz, subject to the boundary conditions

@W
@z
¼ cos h

2KPes
W at z ¼ 61: (20)

We have introduced three-dimensionless groups41

Pes ¼
V0

2drH
; Pef ¼

2�C
dr
; K ¼ dtdr

V2
0

: (21)

The swimming P�eclet number Pes is the ratio of the persistence length of swimmer trajectories

over the channel width and is a measure of confinement. The flow P�eclet number Pef is the ra-

tio of the imposed wall shear rate over the rotational diffusivity of the swimmers; equivalently,

it is also the ratio of the correlation time d�1
r of swimmer orientations over the characteristic

time ð2�CÞ�1
for alignment by the flow. Finally, K is a swimmer-specific parameter characteriz-

ing the relative magnitude of Brownian diffusion over deterministic swimming. From the

boundary condition (20), it is evident that our model is only valid for K > 0, i.e., in the pres-

ence of translational diffusion; the limit of K¼ 0, which involves a singularity in the distribu-

tion of particles at the channel boundaries, is therefore not considered in this work but could be

addressed using a different model such as that proposed in our recent work.47

Non-dimensionalization of the particle shear stress leads to the simple form

Rp
yzðzÞ ¼ ahpypzi þ bcðzÞhp2

yp2
z i; (22)

where we have introduced the dimensionless groups

a ¼ n

ldr
r0 þ 3kBTð Þ and b ¼ n‘3A: (23)

Noting that kBT � jr0j for typical biological swimmers, a � nr0=ldr describes the relative

magnitude of active stresses with respect to dissipative processes. Expressions for the dimen-

sionless disturbance velocity udðzÞ, local particle viscosity gpðzÞ, and relative viscosity gr are

then easily obtained as

udðzÞ ¼ �
ðz

�1

Rp
yzðz0Þ dz0; (24)

and

gp zð Þ ¼
ahpypzi

�Pef zþ dud=dz
þ bhp2

yp2
z i; gr ¼ 1þ 3

2Pef

ð1

�1

ud zð Þ dz

" #�1

: (25)

D. Approximate theory for weak flows and wide channels

Before proceeding to solve the governing equations numerically, we derive an approximate

theory for the viscosities gpðzÞ and gr in the limits of weak flows (Pef ! 0) and wide channels

(Pes ! 0). If the channel is wide, spatial gradients in orientational moments are weak, and we

can approximate the distribution function in the form

Wðz; pÞ � cðzÞwðp; zÞ; (26)
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where cðzÞ ¼ h1i is the concentration profile and where the orientation distribution function

wðp; zÞ is that for an unbounded suspension in uniform simple shear with shear rate cðzÞ. An

approximate expression for the concentration in weak flows was previously found by Ezhilan

and Saintillan,41 as

c zð Þ � B 6K cosh Bþ cosh Bz½ �
6KB cosh Bþ sinh B

with B�1 ¼ KPes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þ 6K

r
: (27)

In the limit of weak flow, the orientation distribution wðp; zÞ can be also calculated asymptoti-

cally as a regular expansion in powers of shear rate,28 leading to the approximation

w p; zð Þ �
1

4p
þ f

8p
c zð Þpypz þ � � �: (28)

The orientational moments are then readily obtained as

hpypzi �
f

30
c zð Þc zð Þ; hp2

yp2
z i �

1

15
c zð Þ: (29)

Using Eqs. (27) and (29), it is then straightforward to estimate the dimensionless particle shear

stress and local viscosity as

Rp
yz zð Þ � 1

30
afþ 2bð Þc zð Þc zð Þ; gp zð Þ � 1

30
afþ 2bð Þc zð Þ: (30)

In very wide channels and away from walls we have cðzÞ � 1, and gp simplifies to the low-

shear-rate asymptote previously derived by Saintillan20 for a bulk suspension in uniform shear.

If we further assume that cðzÞ � �Pef z, which is valid in very dilute systems, we can also

derive an analytical expression for the relative viscosity as

gr � 1� 1

10
afþ 2bð Þ 2 sinh B� 2B cosh Bþ B2 sinh Bþ 2B3K cosh B

B2 6KB cosh Bþ sinh Bð Þ

" #�1

: (31)

In very wide channels (B!1) and dilute systems (n‘3 ! 0)

gr ! 1� 1

30
afþ 2bð Þ

� ��1

� 1þ 1

30
afþ 2bð Þ; (32)

which again matches the low-shear-rate asymptote in a bulk suspension.20 As shown below in

Sec. III C, Eq. (31) indeed captures the relative viscosity quantitatively at low concentrations

and in wide channels.

E. Numerical solution and parameter selection

Equation (19) subject to boundary conditions (20) was solved numerically for a range of

parameter values using a finite-volume numerical algorithm previously developed by Ezhilan

and Saintillan.41 The algorithm solves for the full distribution function in the three-dimensional

space X� ½�1; 1� and satisfies the normalization condition of Eq. (8) to machine precision.

Due to the nonlinearity of the governing equations, the unsteady version of Eq. (19) was

marched explicitly in time to steady state, coupled to a semi-analytical solution for the fluid ve-

locity based on Eq. (24).

Simulation parameters were estimated based on the experiments of Gachelin et al.,40

Rusconi et al.,13 and L�opez et al.31 These studies used E. coli bacteria, with body length

‘ � 2 lm, swimming speed V0 � 20 lm s�1, and dipole strength r0 � �9:46� 10�19 N m. The
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translational and rotational diffusivities were estimated as dt � 1:6� 10�11 m2 s�1 and dr � 0:5
s�1 (based on the tumbling rate of the bacteria). The number density is varied in the range of

n � 1014–1016 m�3, which is consistent with typical experiments, and the mean shear rate is

varied between 0 and 250 s�1. Based on these estimates, the activity parameter a ranges from 1

to 10 in absolute value; we focus in this study on the case of pushers for which a < 0, though

a few results are also shown for pullers (a > 0) as well as movers (a¼ 0). Finally, we set f¼ 1

in all of our calculations, as is appropriate for slender swimmers, and most of the results pre-

sented here are for channel half widths of H ¼ 10 lm and smaller, which is on the lower end

of typical experimental values.

III. RESULTS AND DISCUSSION

A. Particle distributions

We first analyze steady-state particle distributions across the channel, with special focus on

the orientational moments governing the effective rheology. Some of these results echo those

presented in our previous work,41 but also extend them to higher-order moments and differ

slightly due to the inclusion of the disturbance velocity ud, which was neglected in that prior

study. Concentration profiles cðzÞ ¼ h1i are illustrated in Fig. 2 and show strong accumulation

of particles at the channel walls in agreement with experiments,8–10,40 numerical simula-

tions,48–51 and theoretical models.41,47,52,53 As explained in previous studies, this accumulation

is to leading order simply the result of self-propulsion and confinement41 and is also amplified

by hydrodynamic interactions in the case of pusher particles.8 The influence of the flow and

swimming P�eclet numbers is also as expected. In particular, increasing Pes is equivalent to

FIG. 2. Concentration profiles for K ¼ 0:02; a ¼ �5, b¼ 1, different values of Pef, and increasing levels of confinement:

(a) Pes¼ 1, (b) Pes¼ 2, and (c) Pes¼ 3.

FIG. 3. Profiles of the off-diagonal component hpypzi of the nematic order parameter tensor for K ¼ 0:02; a ¼ �5, b¼ 1,

different values of Pef, and increasing levels of confinement: (a) Pes¼ 1, (b) Pes¼ 2, and (c) Pes¼ 3.
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decreasing the channel width, which results in the interaction and eventual merging of the two

accumulation layers. Increasing Pef also causes a decrease in accumulation due to the reorienta-

tion of the particles by the shear, which limits their ability to swim towards boundaries by

reducing the wall-normal polarization.41 This effect of flow strength was also recently observed

in the microfluidic experiments of Figueroa-Morales et al.54 Another effect of increasing Pef is

the appearance of a weak depletion near the channel centerline, which is also observed in

experiments13 and results from the preferential trapping of the particles in high-shear near-wall

regions due to their nematic alignment with the flow. This depletion is most notable in wide

channels (Pes¼ 1) as rationalized by previous theoretical models.41,55 The reader is referred to

our previous modeling work41 for a more thorough analysis of these various effects, including

the derivation of scaling laws for the thickness of the wall accumulation layer and centerline

depletion, as well as their relation to the polarization and nematic parameter fields.

In anticipation of the rheology results discussed in Sec. III C, we turn our attention to the

second and fourth orientational moments, which are known to affect the particle shear stress

and effective viscosity via Eqs. (22) and (25). The off-diagonal component hpypzi of the ne-

matic order parameter tensor, which enters the active contribution to the particle stress, is plot-

ted in Fig. 3 for the same parameters as in Fig. 2. Unsurprisingly, we find that the particles

align under the local shear, leading to a net shear nematic alignment across the channel. Upon

increasing flow rate, hpypzi first increases strongly near the walls, since the concentration and

shear rate are both highest there. As Pef keeps increasing, the weakening of wall accumulation

becomes evident, causing the maximum in shear alignment to shift away from the walls

towards the shear-trapping region where the particle concentration is the highest. Corresponding

data for the fourth moment hp2
yp2

z i, which enters the dissipative contribution to the particle

stress, are shown in Fig. 4. This fourth moment, which is always positive, follows trends very

FIG. 4. Profiles of the component hp2
yp2

z i of the fourth-order orientational moment for K ¼ 0:02; a ¼ �5, b¼ 1, different

values of Pef, and increasing levels of confinement: (a) Pes¼ 1, (b) Pes¼ 2, and (c) Pes¼ 3.

FIG. 5. Particle shear stress profiles Rp
yzðzÞ for Pes¼ 1, K ¼ 0:02, b¼ 1 and for different flow strengths Pef in the case of:

(a) pushers (a < 0), (b) movers (a¼ 0), and (c) pullers (a > 0).
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similar to the concentration profiles of Fig. 2, in agreement with the weak flow estimate of Eq.

(29). In particular, it is sharply peaked near the walls in weak flows but becomes nearly uni-

form in stronger flows.

B. Particle shear stress and disturbance flow

Both moments hpypzi and hp2
yp2

z i calculated above enter the particle shear stress Rp
yz in Eq.

(22), which is plotted in Fig. 5 for pushers, movers, and pullers at different flow strengths. In

all cases, the particle shear stress is an odd function of z as expected from symmetry considera-

tions, and its magnitude tends to increase with flow strength as a result of the passive stress Rf ,

which scales linearly with the local shear rate. The trends in the case of pushers, however, are

more complex: we find that the sign of the shear stress changes at a critical flow strength, indi-

cating a change in rheological behavior. This reversal results from the competition between

active and dissipative stresses, which are of opposite signs for pushers, and will be discussed in

more detail below. Movers and pullers, however, do not exhibit this reversal and behave in a

qualitatively similar way.

These trends on the particle stress are easier to interpret in terms of the disturbance flow pro-

files, which are obtained by integration of Rp
yz according to Eq. (24) and plotted in Fig. 6. In the case

of movers and pullers in Figs. 6(b) and 6(c), the disturbance velocity is always negative across the

entire channel and has a roughly parabolic profile, indicating that the effect of the particles is to

slow down the imposed pressure-driven flow, as would be expected in the case of passive rodlike

particles.28,56 This effect, which becomes stronger with increasing Pef, can be interpreted as an

increase in the effective shear viscosity due to the particles, which results from both passive stresses

and active stresses in the case of pullers. This explains, in particular, why the disturbance flow is

stronger for pullers than movers. The case of pushers in Fig. 6(a), however, is more complex and

interesting. In weak flows, the disturbance velocity is positive suggesting an enhancement of the

flow rate with respect to the imposed flow; this will be confirmed in Sec. III C where we report rela-

tive viscosities below one. This enhancement is the result of active stresses, which are strongest in

the near-wall accumulation layer in weak flows as shown in Fig. 3; consequently, the profiles are

nearly flat in the bulk of the channels with sharp gradients near the walls. Above a certain flow

strength, the disturbance velocity decreases to become negative as active stresses become weaker

and the effect of dissipative stresses is more significant; this non-monotonic trend will be reflected

in the viscosity data below. The profile shape also becomes more parabolic in strong flows owing to

the nearly linear particle shear stress distribution in this case.

C. Effective rheology

We now turn to the effective rheology of the suspension, first considering the local particle

viscosity gpðzÞ, which is plotted in Fig. 7. Unsurprisingly, the local viscosity varies across the

channel due to the combined effects of confinement and non-uniform shear rate, both of which

FIG. 6. Disturbance velocity profiles udðzÞ for Pes¼ 1, K ¼ 0:02, b¼ 1 and for different flow strengths Pef in the case of:

(a) pushers (a < 0), (b) movers (a¼ 0), and (c) pullers (a > 0).
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affect the local orientation distribution. In suspensions of movers and pullers in Figs. 7(b) and

7(c), the particle viscosity is found to be positive everywhere in the channel. In weak flows, it

is maximum near the walls due to the strong particle accumulation and strong shear rate there.

As the flow strength increases, shear-thinning is observed as in the classic case of passive rod-

like particles28 though it occurs predominantly near the walls, eventually leading to a weak

maximum in the viscosity near the centerline at high values of Pef; this is consistent with the

standard explanation of shear-thinning in rod suspensions due to the nematic alignment of the

particles with the flow, which is strongest in the high-shear near-wall regions but negligible at

the centerline where the shear rate vanishes. The case of pushers is illustrated in Fig. 7(a). In

weak flows, the particle viscosity is strongly negative close to the boundaries but slightly posi-

tive in the low-shear regions close to the centerline; this explains the enhancement of the flow

and the plug-like disturbance velocity profiles observed in Fig. 6(a). At intermediate Pef, the

viscosity becomes positive near the channel walls due to the strong nematic alignment of the

particles there, which causes the passive contribution to the stress to dominate the active contri-

bution in Eq. (22), though it remains negative near the centerline where the shear rate is weak.

This change in sign explains the non-monotonicity of the velocity profiles in Fig. 6(a): for a

given pressure gradient, the flow is hindered near the walls where gp > 0, whereas it is

enhanced near the centerline where gp < 0 (see the curve for Pef¼ 10). In strong flows, the

local viscosity becomes positive throughout the channel due to passive stresses and reaches its

maximum at the centerline.

The net effect of these results on the flow rate is summarized in Fig. 8, showing the rela-

tive viscosity gr as a function of the various parameters. Fig. 8(a) illustrates the effect of flow

strength and activity: in suspensions of movers and pullers, shear-thinning is observed with

increasing flow rate as occurs in passive rod suspensions; the relative viscosity, however, is

enhanced by activity in the case of pullers as known from previous models20 and experi-

ments.38,39 The case of pushers shows a non-monotonic dependence on flow rate: in weak

flows, active stresses dominate resulting in a relative viscosity below one; as flow rate

increases, the dissipative stresses become stronger leading to an increase in gr, which becomes

greater than one and eventually shear-thins in very strong flows. These trends are all consistent

with the experiments of Gachelin et al.40 and L�opez et al.,31 and also agree qualitatively with

previous bulk models.20 Confinement, however, has a quantitative effect as depicted in Fig.

8(b) showing the same results in the case of pushers but for different values of Pes. The effect

is found to be stronger in weak flows, where increasing confinement reduces the effect of activ-

ity: this is primarily the consequence of the merging of the accumulation layers and flattening

of the concentration profile, which drives more particles towards the center of the channel

where the shear rate is weaker.

The effect of number density n is described in Figs. 8(c) and 8(d), with the caveat that our

model is based on a dilute assumption and therefore may not be accurate at high concentrations.

FIG. 7. Local particle viscosity profiles gpðzÞ for Pes ¼ 1;K ¼ 0:02; b ¼ 1 and different values of Pef for: (a) pushers, (b)

movers, and (c) pullers.
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In Fig. 8(c), the number density n is varied while keeping the ratio of the two parameters a and

b constant. As expected, increasing density enhances the effect of both active stresses (at low

flow rates) and passive stresses (at high flow rates), leading to more pronounced departures

from case of pure solvent (gr ¼ 1). The transition from gr < 1 to gr > 1, however, always

occurs at a fixed flow rate of Pef � 10 for this choice of parameters, regarding of density. In

the low-Pef regime, we find that the Newtonian plateau for gr decreases monotonically with n
in the case of pushers, eventually reaching zero at high concentrations. Both of these observa-

tions are consistent with the recent experiments of L�opez et al.31 in a cylindrical Couette flow,

who measured very similar trends as in Fig. 8(c) and also reported an apparent transition to

superfluidity at high densities. This transition to negative total viscosities is expected to lead to

instabilities and is related to the previously reported emergence of unidirectional flows in con-

fined active suspensions.32–36 In the experiments of L�opez et al.,31 the transition to superfluidity

occurred at a number density n � 8� 1015 m�3, from which we can estimate the value of the

ratio n=n0 for the transition as

n

n0

� �
gr¼0

� jr0jn
ldr
¼ 7:98� 10�19 � 8� 1015

1:4� 10�3 � 0:5
� 9:1; (33)

where we have used the estimate of r0 ¼ �7:98� 10�19 N m for the dipole strength as meas-

ured by Drescher et al.16 in the case of E. coli. The result of Eq. (33) is reasonably close to the

value of 8 predicted by our model in Fig. 8(c), suggesting that the validity of the model might

in fact extend beyond the strict dilute limit. Fig. 8(d) shows more details on the dependence of

the low-Pef viscosity plateau on number density and also compares the numerical results to the

FIG. 8. (a) Relative viscosity gr for Pes¼ 1, K ¼ 0:02 and b¼ 1 as a function of flow rate Pef for pullers, movers, and

pushers. (b) Effect of confinement on gr in the case of pushers (a ¼ �5). (c) Effect of number density n on gr in the case of

pushers. In this plot, the ratio a=b ¼ �5 is kept fixed while varying n; the reference number density n0 corresponds to

a ¼ �1. (d) Effect of number density n on the low-Pef Newtonian asymptote g0
r , and comparison to the theoretical estimate

of Eq. (31).
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theoretical estimate of Eq. (31). This estimate captures the initial decrease in viscosity quite

well, especially in wider channels (Pes¼ 1) as anticipated; however, significant quantitative

departures are observed at higher number densities.

IV. CONCLUSIONS

We have developed a nonlinear mean-field kinetic theory for the configuration and effec-

tive rheology of a dilute active suspension in planar Poiseuille flow that accounts for the hydro-

dynamic disturbance driven by the particles as a result of both active and passive stresses. This

model links together our previous theories for the rheology of bulk active suspensions in uni-

form shear20 and for the distribution of particles in Poiseuille flow in the absence of hydrody-

namic disturbances.41 The rheological trends we predicted agree qualitatively with prior bulk

models as well as experiments on bacterial suspensions, both in the bulk31 and in microfluidic

geometries.40 In particular, we have confirmed that the effects of activity are predominant in

weak flows, where pushers tend to decrease the viscosity whereas pullers increase it; in strong

flows, activity becomes negligible and the suspension behavior is similar to that of passive rod-

like particles. Confinement, however, has a nontrivial quantitative influence on the viscosity as

a result of two main effects: the non-homogeneous distribution of particles across the channel

with strong accumulation near the walls in weak flows, and the non-uniform shear profile of the

imposed pressure-driven flow controlling particle alignment. Notably, this tends to enhance the

impact of the particles on the flow in weak flows compared to a bulk system. Finally, our dilute

model was able to capture the decrease in viscosity in pusher suspensions with increasing vol-

ume fraction, which led to the transition to superfluidity in the experiments of L�opez et al.:31

while good agreement between experiments and model predictions was found, a more quantita-

tive description of this transition, however, is beyond the range of applicability of the present

theory and may require more realistic particle simulations such as those of Saintillan and

Shelley,57,58 whose validity extends into the semi-dilute regime.
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